
Download free eBooks at bookboon.com

Object Oriented Programming Using Java

154

Creating And Using Exceptions

9 Creating And Using Exceptions
Introduction

If the reader has written Java programs that make use of the file handling facilities they will have written
code to catch exceptions i.e. they will have used try\catch blocks. This chapter explains the importance
of creating your own exceptions and shows how to do this by extending the Exception Class and using
the ‘Throw’ mechanism.

Objectives

By the end of this chapter you will be able to…

•	 Appreciate the importance of exceptions
•	 Understand how to create your own exceptions and
•	 Understand how to throw these exceptions.

This chapter consists of six sections:-

1) Understanding the Importance of Exceptions
2) Kinds of Exception
3) Extending the Exception Class
4) Throwing Exceptions
5) Catching Exceptions
6) Summary

9.1 Understanding the Importance of Exceptions

Exception handling is a critical part of writing Java programs. The authors of the file handling classes
within the Java language knew this and created routines that made use of Java exception handling
facilities – but are these really important? and do these facilities matter to programmers who write their
own applications using Java?

http://bookboon.com/

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

155

Creating And Using Exceptions

Activity 1

Imagine part of a banking program made up of three classes, and three methods as shown below…

*

1

 BankManager

 BookofClients

awardLoan()

getClient(pClientIID :String) :Client

 Client

determineCreditRating()

listOfClients

The system shown above is driven by the BankManager class. The awardLoan() method is invoked,
either via the interface or from another method. This method is intended to accept or reject a
loan application.

The BookofClients class maintains a set of account holders…people are added to this set if they
open an account and of course they can be removed. However the only method of interest to us is
the getClient() method. This method requires a string parameter (a client ID) and either returns a
client object (if the client has an account at that bank) – or returns NULL (if the client does not exist).

The Client class has only one method of interest determineCreditRating(). This method is invoked to
determine a clients credit rating – this is used by the BankManager class to decide if a loan should
be approved or not.

Considering the scenario above look at the snippet of code below …

 Client c = listOfClients.getClient(clientID) ;

 c.determineCreditRating();

This fragment of code would exist in the awardLoan() method. Firstly it would invoke the getClient()
method, passing a client ID as a parameter. This method would return the appropriate client object
(assuming of course that a client with this ID exists) which is then stored in a local variable ‘c’. Having
obtained a client the determineCreditRating() method would be invoked on this client.

Look at these two lines of code. Can you identify any potential problems with them?

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Object Oriented Programming Using Java

156

Creating And Using Exceptions

Feedback 1

If a client with the specified ID exists this code above will work. However if a client does not exist
with the specified ID the getClient() method will return NULL.

The second line of code would then cause a run time error (specifically a NullPointerException) as it
tries to invoke the determineCreditRating() method on a non existent client and the program would
crash at this point.

Activity 2

Consider the following amendment to this code and decide if this would fix the problem.

 Client c = listOfClients.getClient(pClientID) ;

 If (c !=NULL) {

 c.determineCreditRating();

 }

Feedback 2

If the code was amended to allow for the possible NULL value returned it would work – however
this protection is insecure as it relies on the programmer to spot this potential critical error.

When writing the getClient() method the author was fully aware that a client may not be found and in
this case decided to return a NULL value. However this relies on every programmer who ever uses this
method to recognise and protect against this eventuality.

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

157

Creating And Using Exceptions

If any programmer using this method failed to protect against a NULL return then their program could
crash – potentially in this case losing the bank large sums of money. Of course in other applications,
such as an aircraft control system, a program crash could have life threatening results.

A more secure programming method is required to ensure that that a potential crash situation is always
dealt with!

Such a mechanism exists – it is a mechanism called ‘exceptions’.

By using this mechanism we can ensure that other programmers who use our code will be alerted to
potential crash situations and the compiler will ensure that these programmers deal with the ‘issue’.
Thus we can ensure that no such situation is ‘forgotten’. How they are dealt with remains a choice with a
programmer who uses our methods but the compiler will ensure that they at least recognise a potential
crash situation.

In the situation above rather than return a NULL value the getClient() method should generate an
exception. By generating an exception the Java compiler will ensure that this situation is dealt with.

9.2 Kinds of Exception

In order to generate meaningful exceptions we need to extend the Exception classes built into the Java
language – there are two of these (normal exceptions and run time exceptions).

Subclasses of java.lang.Exception are used for anticipated problems which need to be managed. They
must be declared in the originating method’s throws clause and a call to method must be placed in try/
catch block.

Subclasses of java.lang.RuntimeException are used for situations which lead to runtime failure and where
it may not be possible to take any sensible remedial actions. They do not need to be declared in throws
clause and a call need not be in try/catch block (but can be).

Thus we have the choice as to whether the Java compiler should force us to explicitly deal with a particular
kind of exception.

Exception subclasses are appropriate for things which we know might go wrong and where we can take
sensible recovery action – e.g. IO errors.

RuntimeException subclasses are appropriate for things which should not happen at all and where there
is probably nothing we can do to recover the situation, e.g. an out of memory error or discovering that
the system is in an inconsistent state which should never be able to arise.

http://bookboon.com/

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

158

Creating And Using Exceptions

9.3 Extending the Exception Class

When writing our own methods we should look for potential failure situations (e.g. value that cannot be
returned, errors that may occur in calculation etc). When a potential error occurs we should generate
an ‘Exception’ object i.e. an object of the Exception class. However it is best to first define a subclass of
the general Exception i.e. to create a specialised class and throw an object of this subtype.

A new exception is just like any new class in this case it is a subclass of java.lang.Exception

In the case above an error could occur if no client is found with a specified ID. Therefore we could create
a new exception class called ‘UnknownClientException’.

The parameter to the constructor for the Exception requires a Sting thus the constructor for
UnknownClientException also requires a String. This string is used to give details of the problem that
may generate an exception.

The code to create this new class is given below…

import java.lang.Exception;

/***
 * Exception thrown when attempting to get an non-existent client ID
 *
 * @author Simon Kendal
 * @version 1.0 (11th July 2009)
 **/
class UnknownClientException extends Exception
{
 /**
 * Constructor
 *
 * @param pMessage description of exception
 */
 UnknownClientException (String pMessage)
 {
 super(pMessage);
 }
}

In some respects this looks rather odd. Here we are creating a subclass of Exception but our subclass
does not contain any new methods – nor does it override any existing methods. Thus its functionality
is identical to the superclass – however it is a subtype with a meaningful and descriptive name.

If sublasses of Exception did not exist we would only be able to catch the most general type of exception
i.e an Exception object. Thus we would only be able to write a catch block that would catch every single
type of exception.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Object Oriented Programming Using Java

159

Creating And Using Exceptions

Having defined a subclass we instead have a choice… a) we could define a catch block to catch objects
of the general type ‘Exception’ i.e. it would catch ALL exceptions or b) we could define a catch block
that would catch UnknownClientExceptions but would ignore other types of exception.

By looking at the online API we can see that many predefined subclass of exception already exist. There
are many of these including:-

•	 IOException
 - CharConversionException
 - EOFException
 - FileNotFoundException
 - ObjectStreamException

•	 NullPointerException
•	 PrinterException
•	 SQLexception

Thus we could write a catch block that would react to any type of exception, or we could limited it to
input \ output exceptions or we could be even more specific and limit it to FileNotFound exceptions.

ENGINEERS, UNIVERSITY
GRADUATES & SALES
PROFESSIONALS
Junior and experienced F/M

Total will hire 10,000 people in 2014.
Why not you?

Are you looking for work in
process, electrical or other types of
engineering, R&D, sales & marketing
or support professions such as
information technology?

We’re interested in your skills.

Join an international leader in the
oil, gas and chemical industry by
applying at

www.careers.total.com
More than 700 job
openings are now online!

Potential
for development

C
op

yr
ig

ht
 :

To
ta

l/C
or

bi
s

for development

Potential
for exploration

http://bookboon.com/
http://bookboon.com/count/advert/f512d1dd-ebe8-4036-b221-a2f500bd9ae3

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

160

Creating And Using Exceptions

9.4 Throwing Exceptions

Having defined our own exception we must then instruct the getClient() method to throw this exception
(assuming a client has not been found with the specified ID).

To do this we must first tell the compiler that this class may generate an exception – the complier will
then ensure that any future programmer who makes use of this method catches this exception.

To tell the compiler this method throws an exception we add the following statement to the methods
signature ‘throws UnknownClientException’.

public Client getClient(String pClientID)
 throws UnknownClientException

We must create a new instance of the UnknownClientException class and apply the throw keyword to
this newly created object.

We use the keyword ‘throw’ to throw an exception at the appropriate point within the body of the method.

if (foundClient != null)
{
 return foundClient;
}
else
{
 throw new UnknownClientException("BookOfClients.getClient():
 unknown client ID:" + pClientID);
}

In the example above if a client is found the method will return the client object. However it will no longer
return a NULL value. Instead if a client has not been found the constructor for UnknownClientException
is invoked, using ‘new’. This constructor requires a String parameter – and the string we are passing here
is an error message that is trying to be informative and helpful. The message is specifying:-

•	 the class which generated the exception (i.e. BookOfClients),
•	 the method within this class (i.e. getClient()),
•	 some text which explains what caused the exception and
•	 the value of the parameter for which a client could not be found.

By defining an UnkownClientException and using the throw clause in the header of the getClient()
method we are providing a warning to all methods calling this one that an exception may be thrown.
This enables the Java compiler to make sure a try/catch block is provided where required.

By doing this we are preventing potentially critical errors from going unnoticed!

http://bookboon.com/

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

161

Creating And Using Exceptions

9.5 Catching Exceptions

Having specified to the compiler that this method may generate an exception we are forcing other
programmers to protect against critical errors by placing calls to this method within a try / catch block.
The code in the try block will be terminated if an exception is generated and the code in the catch block
will be initiated instead.

Thus in the example above the awardLoan() method can decide what to do if no client with the specified
ID is found…

try
{
 Client c = listOfClients.getClient(clientID) ;
 c.determineCreditRating();

 // add code to award or reject a loan application based on this
credit rating

}

catch (UnknownClientException uce)
{
 System.out.println("INTERNAL ERROR IN BankManager.awardLoan()\n"
 + "Exception details: " + uce);

}

Now, instead of crashing with a NullPointerException if the client ID is not found, the
UnknownClientException we have deliberately thrown will be handled by the Java Virtual Machine
which will terminate the code in the try clause and invoke the code in the catch clause, which in this
case will display a message warning the user about the problem.

9.6 Summary

Java exceptions provide a mechanism to deal with abnormal situations which occur during program
execution.

By making use of the Java exception mechanism we are protecting against potentially life threatening
program failure.

The exception mechanism will ensure other programmers who use our methods recognise and deal
with error situations.

When exceptions are generated the code in a catch block will be initiated – this code could take remedial
action or terminate the program generating an appropriate error message. In either case at least the
program doesn’t just ‘stop’.

http://bookboon.com/

